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A class of explicit solutions of the two-dimensional Euler equations consisting of
a finite-area patch of uniform vorticity surrounded by a finite distribution of co-
rotating satellite line vortices is constructed. The results generalize the classic study
of co-rotating vortex arrays by J. J. Thomson. For N satellite line vortices (N > 3)
a continuous one-parameter family of rotating vortical equilibria is derived in which
different values of the continuous parameter correspond to different shapes and areas
of the central patch. In an appropriate limit, vortex patch equilibria with cusped
boundaries are found. A study of the linear stability is performed and a wide range
of the solutions found to be linearly stable. Contour dynamics methods are used to
calculate the typical nonlinear evolution of the configurations. The results are believed
to provide the only known exact solutions involving rotating vortex patches besides
the classical Kirchhoff ellipse.

1. Introduction
Since the early work of Lord Kelvin (1878) who studied the case of three vortices

arranged in a ring, vortex arrays (or vortex ‘lattices’ or ‘crystals’) have been a problem
of perennial interest to fluid dynamicists. Thomson (1882) considered the more
general situation in which N line vortices are arranged in a co-rotating configuration
equispaced around the circumference of a circle for up to N = 7. This problem was
later reappraised by Havelock (1931) who also considered larger values of N and
corrected some erroneous conclusions made by Thomson regarding the stability of
the configurations.

Generalizations of this classical work include that of Morikawa & Swenson (1971)
who, in an attempt to model geostrophic vortices in the atmosphere, placed an
additional line vortex at the centre of the co-rotating polygonal array of satellites.
The central line vortex was a simple model of the polar vortex whereas the satellites
modelled vortex cores associated with atmospheric pressure systems in the hemisphere
surrounding the pole. Further applications of this model to atmospheric pressure
systems were considered later by Bauer & Morikawa (1976).

Motivated by the formation of finite vortex arrays in superfluid helium (e.g. Yarm-
chuk, Gordon & Packard 1979), Campbell & Ziff (1978) have constructed a catalogue
of stable line vortex equilibria for up to N = 50 line vortices. Research into line
vortex equilibria of this kind continues. For example, Aref (1998) and co-workers
have recently discovered a class of line vortex equilibria which seem to lack any form
of symmetry.

Dritschel (1985, 1986) has considered rather different generalizations of Thomson’s
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co-rotating arrays of line vortices. By replacing the line vortices by patches of uniform
vorticity, he constructed a class of equilibria consisting of co-rotating vortex patches.
These equilibria were computed numerically. Having calculated the equilibrium so-
lutions, Dritschel (1985) went on to study the linear and nonlinear (Dritschel 1986)
stability of the solutions. Polvani & Dritschel (1993) have discussed models of the
polar vortex using configurations of line vortices and patches on the surface of a
sphere.

Even more recently, there has been experimental interest in these vortex patterns.
Durkin & Fajans (2000) have studied the formation and stability of the N vortices
in a ring, as well as the Morikawa & Swenson problem with a central vortex, in a
Malmberg–Penning trap. A strongly magnetized electron column can be described, in
appropriate circumstances, by the two-dimensional drift-Poisson equations which are
isomorphic to the two-dimensional Euler equations. The formation of stable vortex
patterns in a Malmberg–Penning trap was first reported by Fine et al. (1995) and has
again prompted renewed interest in stable vortical equilibria.

In this paper, we make a contribution to the understanding of equilibrium vortex
arrays by considering a generalization of Thomson’s co-rotating line vortex problem
in which a finite-area patch of uniform vorticity is placed with its centroid at the
centre of the co-rotating configuration. To the best of my knowledge, this problem
has not been previously studied in the literature, even by numerical means. It turns
out that a class of exact mathematical solutions to this problem can be written down
in closed form. These solutions are presented here. The solutions can be understood
as bifurcating, in an appropriate sense, from the classical Rankine vortex (Saffman
1992).

Given the basic nature of the problem of vortex dynamics under consideration,
this paper limits itself to a general and non-specific derivation of the solutions and a
study of their stability properties. The range of possible applications and uses of the
new exact solutions is potentially broad. Vortex arrays arise in a number of disparate
applications including studies of superfluid helium (Yarmchuk et al. 1979; Acheson
1990) and magnetically confined electron columns (Fine et al. 1995; Durkin & Fajans
2000). There are analogies between the vorticity equation of ideal inviscid fluids and
the Vlasov equation of charged particle physics and it is possible that the exact
solutions presented herein might have corresponding analogues in the ‘water bag’
method for calculating phase space evolution problems of plasma physics (see Pullin
1992 for a list of references). The solutions also provide more realistic models of the
polar vortex than the line vortex models considered by Morikawa & Swenson (1971)
and Bauer & Morikawa (1976). Bauer & Morikawa (1976) realize this deficiency in
their model and suggest that a more realistic one might be obtained by replacing the
single polar vortex by a stable 3 + 1 line vortex system where the centre vortex is an
anticyclone surrounded by three cyclones. This is a way of increasing the degrees of
freedom of the model in describing the complicated concentration of vorticity at the
hemispherical pole while retaining the mathematical simplicity implicit in line vortex
models. The solutions here in which the polar vortex is modelled by a finite-area
vortex patch also share the virtues of mathematical exactness.

A subsidiary result of the present work involves an issue which has been the
source of much discussion and controversy in the vortex dynamics literature. This is
the question of the existence of equilibrium patches of uniform vorticity with cusp
singularities in their boundaries. In a limiting case, the central vortex patches in
the exact solution class presented here are found to admit such cusp singularities.
Overman (1986) has shown that a discontinuous tangent angle in the boundary
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of an equilibrium vortex patch (or ‘V-state’) can only jump by either 90◦ or 180◦.
He also surveyed the extant literature and, applying a combined local and global
method, discovered that all known limiting equilibria correspond to corner formation.
Overman (1986) found no situation admitting cusps even though there had been
statements in the literature that such cusps had been found numerically. See Overman
(1986) for a full discussion of the debate in the literature.

Exact solutions of the Euler equations involving distributions of vorticity with dense
support are rare, so it seems appropriate to document any such solutions. Non-trivial
exact solutions can provide important bench-marks for checking numerical codes.
To the best of my knowledge, the solutions derived herein are the only examples, be-
sides the classical Kirchhoff ellipse (Saffman 1992), of mathematically exact equilibria
of the Euler equations involving rotating finite patches of non-zero vorticity.

In § 2, the mathematical construction of the exact equilibria is described. In § 3, the
linear stability of the solutions is studied using a spectral method based on Taylor
and Laurent series. Finally, in § 4, a brief study of the nonlinear evolution of some
typical equilibria is presented.

2. Exact rotating equilibria
Consider the classical Rankine vortex solution (Saffman 1992) of the steady two-

dimensional Euler equations governing an ideal inviscid fluid. The velocity field is
purely azimuthal and is given in cylindrical polar coordinates as u = (0, V (r)) where

V (r) =


1
2
ωr, r 6 a,

1

2r
ωa2, r > a.

(2.1)

This flow consists of a circular patch of radius a and uniform vorticity ω surrounded
by irrotational flow everywhere outside the patch.

The fact that the Rankine vortex solution consists of a finite-area patch which
not only has constant vorticity, but is also in pure solid-body rotation, provides the
basis of our method of generalization. If (u, v) denote the Cartesian components of
the velocity of the Rankine vortex, then we can alternatively write the solution (2.1)
in terms of the complex variable z = x + iy (where x and y are the usual Cartesian
coordinates) as

u− iv =

{ − 1
2
iωz̄, z ∈ D,

− 1
2
iωS(z), z /∈ D, (2.2)

where

S(z) ≡ a2

z
, (2.3)

and where D denotes the closed circular disk |z| 6 a. It is important to make the
observation that S(z) coincides with what is known as the Schwarz function (see
Davis 1974) of the curve ∂D bounding the region D of constant vorticity that is in
solid-body rotation. In this case, ∂D is a circle of radius a.

The Schwarz function S(z) of an arbitrary analytic curve ∂D is defined to be the
function which is analytic in an annulus containing ∂D and which satisfies

S(z) = z̄ on ∂D. (2.4)

The general theory of the Schwarz function is discussed by Davis (1974). In the
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X=1
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Figure 1. The typical vorticity distribution of interest: a four-fold symmetric central uniform vortex
patch of vorticity ω rotating with angular velocity Ω = 1

2
ω with four co-rotating satellite line

vortices (shown as small circles).

example of a circular disk of radius a, the equation of the circular boundary is given
by

zz̄ = a2, (2.5)

so that, everywhere on the boundary,

z̄ =
a2

z
. (2.6)

Thus, S(z) as given in (2.3) is indeed the Schwarz function of the circle.
In a frame of reference co-rotating with the patch of vorticity in solid-body rotation,

the velocity field can be written

u− iv =

{
0, z ∈ D,
− 1

2
iωS(z) + 1

2
iωz̄, z /∈ D. (2.7)

In the case of the Rankine vortex, the patch D has a trivial geometrical structure,
i.e. it is a circular disk. We now seek solutions in which a finite-area patch of uniform
vorticity ω, with non-trivial geometrical structure, is in solid-body rotation with
angular velocity 1

2
ω and is surrounded by a finite distribution of line vortices which

rotate with the same angular velocity. This situation is shown in figure 1. In this
paper, attention is restricted to configurations having N-fold rotational symmetries.
Except for the set of line vortices, the flow everywhere exterior to the central patch
is assumed to be irrotational. If there are N line vortices of strength Γj at points
{zj |j = 1, . . . , N} then, in a co-rotating frame of reference, the complex velocity field
has the form:

u− iv =


0, z ∈ D,
N∑
j=1

− iΓj
2π(z − zj) + iF(z) + 1

2
iωz̄, z /∈ D, (2.8)

where the velocity field, and the domain D, are independent of time and F(z) is
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analytic everywhere outside D decaying to zero as |z| → ∞. The flow inside D
vanishes identically because the fluid in D is in solid-body rotation.

To examine whether non-trivial solutions of the form (2.8) can be found, consider
a streamfunction defined by

ψ =


0, z ∈ D,
1
4
ω

[
zz̄ −

∫ z

S(z′) dz′ −
∫ z̄

S̄ (z′) dz′
]
, z /∈ D. (2.9)

where D is now some arbitrary patch of uniform vorticity in solid-body rotation and
S(z) is the Schwarz function of its boundary ∂D which is assumed to be an analytic
curve.

First, it is necessary to determine whether all the dynamical constraints of the
Euler equation can be satisfied on the boundary of the patch. There is a dynamical
condition that the fluid velocities everywhere on the patch boundary ∂D must be
continuous. This is known to be equivalent (Saffman 1992) to continuity of fluid
pressure at the vortex jump. Approaching the patch boundary from the exterior,

u− iv = 2iψz = 1
2
iω(z̄ − S(z)), (2.10)

on ∂D, but this is exactly zero everywhere on ∂D (and therefore equal to the interior
velocity field) by definition of the Schwarz function. Because the flow inside the patch
is quiescent then the fluid velocities are indeed continuous at the patch boundary.

There is a further kinematic condition on ∂D which says that, in the co-rotating
frame, the boundary ∂D must be a streamline. If ψ denotes the streamfunction in the
co-rotating frame then

2i dψ = 2iψz dz + 2iψz̄ dz̄ = (u− iv) dz − (u+ iv) dz̄

= 1
2
iω(z̄ − S(z)) dz + 1

2
iω(z − S̄ (z̄)) dz̄ = 0 on ∂D, (2.11)

where the last equality again follows from the definition of the Schwarz function.
Thus, both the dynamic and kinematic boundary conditions on the boundary of the
vortex patch are indeed satisfied by (2.9).

No specifications have yet been made on the shape of the patch D. It is a fact
following from the general theory (Davis 1974) that the Schwarz function of a general
analytic curve ∂D is only guaranteed to be analytic in an annular neighbourhood
enclosing ∂D. If we move out of this annulus of analyticity (perhaps out to infinity,
for example) then, in general, we will encounter singularities of the Schwarz function
so that the velocity field (2.9) will exhibit unphysical singularities at any such points.
In this way, (2.9) will not necessarily represent a consistent, physically meaningful
solution of the two-dimensional Euler equation.

Suppose, however, that a very special patch D can be chosen such that the continu-
ation of the Schwarz function S(z) of ∂D everywhere outside D is purely meromorphic
with a finite distribution of simple pole singularities with real residues. Mathemati-
cally, this means S(z) can be written as

− 1
2
ωS(z) =

N∑
j=1

− γj

2π(z − zj) + f(z), (2.12)

where f(z) is analytic everywhere outside D, {zj | j = 1, . . . , N} are points strictly
outside D and the numbers {γj | j = 1, . . . , N} are real. Physically, by imposing that
the velocity field is given by (2.9), condition (2.12) corresponds to exactly the situation
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of interest, i.e. a uniform patch of fluid in solid-body rotation surrounded by a finite
distribution of line vortex singularities. To see this, observe that the velocity field (2.9)
with S(z) of the form (2.12) is of exactly the required form (2.8). Moreover, the line
vortices have strengths Γj = γj .

There are additional constraints, however. For a consistent steady solution of the
two-dimensional Euler equation, it remains to ensure that each of the N line vortices
at points zj in the flow remain stationary. It is known from the Helmholtz vortex
theorems (Saffman 1992) that line vortices move with the local non-self-induced
velocity. This steadiness condition therefore amounts to ensuring that the non-self-
induced terms in a local expansion of the velocity field about each of the points zj is
zero.

2.1. Conformal mapping

It is now shown, by explicit construction, that vortex patches D with boundaries whose
Schwarz functions satisfy (2.12) do, in fact, exist. A convenient way to parameterize
the boundaries of such patches is to consider a conformal map z(ζ) from the interior
of the unit circle in a parametric ζ-plane to the exterior of the region D in the
co-rotating frame.

Consider the class of conformal maps given, for each integer N > 2, by

z(ζ) = R

(
1

ζ
+

bζN−1

ζN − aN
)
. (2.13)

This map depends on three continuous parameters a, b and R which are assumed to
be real. R represents a normalization degree of freedom, while we must have a > 1 in
order that the conformal map be analytic everywhere inside |ζ| 6 1. It is also necessary
that the mapping (2.13) is a univalent (that is, one-to-one) map from the unit ζ-circle.
A necessary, but not sufficient, condition is that zζ(ζ) vanishes nowhere inside the
unit ζ-circle. Finally, it is clear that the map (2.13) possesses an N-fold rotational
symmetry about the origin, i.e. if ζ 7→ ζ exp(2πi/N) then z 7→ z exp(−2πi/N).

The non-trivial velocity field outside the patch D in the co-rotating frame can be
written, in terms of ζ and ζ̄, as follows:

u− iv =
iωR

2

(
1

ζ̄
+

bζ̄N−1

ζ̄N − aN − ζ −
bζ

1− ζNaN
)
, (2.14)

using the fact that

S(z(ζ)) = R

(
ζ +

bζ

1− ζNaN
)
. (2.15)

It is clear that S(z(ζ)) has only simple pole singularities at the N points

ζj = a−1 exp

(
2πi(j − 1)

N

)
, j = 1, . . . , N. (2.16)

If z(ζ) is a univalent map inside the unit circle, it is therefore invertible at all
points inside the circle so that S(z) also has just simple poles at the image points
zj = z(ζj), j = 1, . . . , N. Physically, these correspond to line vortices. By expanding
S(z) about the point za = z(a−1) in the physical z-plane, it can be shown after some
algebra that the condition for stationarity of the line vortex at za is given by

a+
ba

1− a2N
− 1

a
+

b

2Na

(
(3−N) +

zζζ(a
−1)

azζ(a−1)

)
= 0. (2.17)
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Equation (2.17) is independent of R, but is a nonlinear algebraic relation between a
and b (for each N). It is convenient to consider a to be a free parameter and to view
(2.17) as an implicit equation for b = b(a;N). By the N-fold rotational symmetry of
the conformal map and the associated velocity field, (2.17) also ensures that the other
N − 1 symmetrically disposed line vortices are also stationary.

It turns out that (2.17) can be rearranged to form a quadratic for b(a;N):

c2(a;N)b2 + c1(a;N)b+ c0(a;N) = 0, (2.18)

where

c2(a;N) =
a2

2N(1− a2N)3
[(N − 1)− 2Na2 + (2N2 − 2N + 2)a2N

−2N(N − 1)a2N+2 + (N − 1)a4N], (2.19)

c1(a;N) =
a2

2N(1− a2N)2
[(3N − 1)− 4Na2 + (2N2 − 4N + 2)a2N

−2N(N − 2)a2N+2 + (N − 1)a4N], (2.20)

c0(a;N) = −a4 + a2, (2.21)

so that the solution for b(a;N) can be given explicitly as

b(a;N) =
−c1(a;N) +

√
[c1(a;N)]2 − 4c2(a;N)c0(a;N)

2c2(a;N)
. (2.22)

The second solution of the quadratic (2.18) is found not to give rise to a univalent
conformal mapping for any choice of a or N and is therefore physically inadmissible.
It is also noted that, throughout the range of existence of solutions, the discriminant
[c1(a,N)]2 − 4c2(a,N)c0(a,N) never vanishes.

In the neighbourhood of za, the most singular term in the velocity field is

u− iv = − ibωRzζ(a
−1)

2Na2

1

z − za + O(1), (2.23)

so that the strength Γs of the satellite line vortices is given by the formula

Γs = −πbωRzζ(a
−1)

Na2
. (2.24)

This quantity is purely real, as required.
The normalization parameter R is arbitrary. Here, it is chosen so that the satellite

line vortices are unit distance from the origin for all values of a and N. This implies
that

R(a;N) =

(
a+

ba

1− a2N

)−1

. (2.25)

With this normalization, the area of the central vortex patch, and therefore its total
circulation, change with a. Let A(a;N) denote the area of the patch with parameter
choices a and N. The circulation of the central vortex patch (denoted Γp) is then

Γp = ωA(a;N). (2.26)

2.2. Non-existence of solutions for N = 2

It remains for us to examine whether, for any given N and a, condition (2.17) can
be solved for b such that (2.13) is a globally univalent conformal mapping function
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N a
(N)
crit

3 5.775
4 2.565
5 1.903
6 1.627
7 1.478
8 1.385
9 1.322

10 1.276
11 1.242
12 1.215

Table 1. a(N)
crit .

from the unit ζ-circle. The case N = 2 is considered first in an attempt to find a
tripole-like structure in which a central V-state in solid-body rotation is surrounded
by two line vortex singularities. In this case, it is found that the parameters a and
b do not result in a univalent mapping from the unit ζ-circle. This is a necessary
condition for a physically admissible solution. Thus, tripole-like solutions within the
proposed class do not seem to exist. This does not preclude the existence of solutions
of the Euler equation in which a vortex patch is surrounded by two satellite line
vortices – recall that, in our analysis, the solution class has been restricted to central
vortex patches that are in pure solid-body rotation. Carton & Legras (1994) have
considered exactly this class of model tripole solution but only investigated a set
of approximate evolution equations following a theory put forward by Legras &
Dritschel (1991).

2.3. N-symmetric co-rotating arrays, N > 3

Solutions within this class can be found for all integers N > 3. For any given N, there
exists a range of a values for which (2.17) is satisfied and which yield parameter pairs
(a, b) that provide univalent conformal mappings from the unit ζ-circle. This range of
existence for each N is denoted

a ∈ [a(N)
crit ,∞), (2.27)

i.e. there exists a lower bound a(N)
crit on the parameter a for which physically admissible

equilibrium solutions can be found. For N = 3, the value a(3)
crit = 5.775 is obtained

(correct to 3 decimal places). Table 1 gives values of a(N)
crit for N between N = 3 and

N = 12. The range of a-values for which solutions exist increases as N increases. It
is possible to find a(N)

crit by finding the equilibrium solution which also satisfies

zζ(exp(πi/N)) = 0. (2.28)

The reason for solving (2.28) is explained in the next section.
A graph of b against a for values of N between 3 and 7 is shown in figure 2. For

all values of N, b is found to be a monotonic increasing function of a. An asymptotic
analysis of (2.17) (or (2.18)) reveals that

b(a;N) ∼ 2Na2

(N − 1)
as a→∞. (2.29)
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Figure 2. b as a function of a for N = 3, 4, 5, 6 and 7.

It can be shown that

A(a;N) ∼ π

a2
as a→∞, (2.30)

so that the central patch vanishes in the limit a→∞, resulting in a co-rotating
configuration of N line vortices equally spaced around the unit circle, as considered
in the classic work of Thomson (1882). Equation (2.29) can be used in (2.13) to show

z(ζ) ∼ 1

aζ
as a→∞, (2.31)

which implies that, for large but finite a, the central vortex patch is small and
almost circular. Physically, this limit corresponds to a small near-circular Rankine
vortex being placed in the stationary point flow at the centre of the N-polygonal
configuration of co-rotating line vortices considered by Thomson (1882).

Because ω is arbitrary, the dynamically important quantity is the ratio of the total
circulation of the central patch to the circulation of the satellite line vortices, i.e.
Γp/Γs. Figure 3 shows graphs of this ratio as a function of a for N between 3 and 7
while figure 4 shows the same graph for N between 8 and 12. For a large, this ratio
tends to zero because, by (2.26) and (2.30), the central patch circulation Γp vanishes in
this limit. For N = 3, figure 3 shows that the satellite line vortex circulation is always
significantly larger than the circulation of the central patch, even for lower values
of a. This disparity in circulations decreases with a for all values of N. Moreover,
for higher N values, the circulations of the central patch and the satellites become
commensurate and, when N > 6, for small enough a-values the circulation of the
central patch eventually exceeds that of the satellites.

Figure 5 shows a typical streamline plot for the case N = 3 in the co-rotating frame.
These streamline plots have many qualitative features in common with the streamline
plots for a co-rotating configuration of line vortices, as plotted by Dritschel (1985);
particularly noticeable in figure 5 are what Dritschel referred to as ‘umbrella’ regions;
these are closed recirculation regions which exist as a consequence of the fact that
the streamlines are being viewed from a co-rotating frame of reference. The central
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Figure 3. Ratio Γp/Γs as a function of a for N = 3, . . . , 7.
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Figure 4. Ratio Γp/Γs as a function of a for N = 8, . . . , 12.

region in which no streamlines are plotted corresponds exactly to the central vortex
patch. Recall that, in a co-rotating frame, because this patch is supposed to be in
solid-body rotation, the velocity field inside this patch vanishes identically. Figure 6
shows a typical streamline pattern for N = 4.

2.4. Limiting patch shapes, a→ a
(N)
crit

As a draws close to the lower limit of the range of existence, N zeros of zζ simulta-

neously draw close to the unit circle. For a > a
(N)
crit these zeros are strictly outside the

unit circle. However, when a = a
(N)
crit , these N zeros hit the unit circle simultaneously.

One such zero is found to have argument πi/N (by symmetry of the mapping, the
remaining N − 1 zeros are at symmetrically disposed points about the origin). This



Exact solutions for rotating vortex arrays with finite-area cores 219

Figure 5. Streamlines for N = 3 and a = 5.8.

Figure 6. Streamlines for N = 4 and a = 2.8.

explains the reason for solving (2.28) when finding the value of a(N)
crit for any given N.

It can be shown using the mapping (2.13) that (2.28) implies the following relation
between b and a:

b =
(1 + aN)2

NaN − aN − 1
, (2.32)

but b is also related to a and N by (2.22) so that the values a(N)
crit (table 1) are the

solutions of the nonlinear equation

(1 + aN)2

NaN − aN − 1
=
−c1(a;N) +

√
[c1(a;N)]2 − 4c2(a;N)c0(a;N)

2c2(a;N)
. (2.33)

A zero of zζ reaching the unit circle corresponds to the formation of a cusp in the
patch boundary. A demonstration of this is given below. The shapes of the limiting
central patches are depicted in figure 7 for N = 3, 4 and 5.

Strictly speaking, the Schwarz function S(z) used to define the velocity field (2.7)
does not exist when a = a

(N)
crit because the boundary ∂D ceases to be an analytic

curve at this value of a. By definition, the Schwarz function S(z) must be analytic
in an enclosing neighbourhood of the curve ∂D and, as a result, must have a local
Taylor expansion (in z) about any point on ∂D. However, when a = a

(N)
crit , this fails

to be true. Nevertheless, this does not represent a genuine obstruction to the validity
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Figure 7. Limiting patches (or ‘V-States’) for N = 3, 4 and 5; a(3)
crit = 5.775, a(4)

crit = 2.565,

a
(5)
crit = 1.903.

of our solutions in the limiting case for while the function S(z) can no longer be

identified with the Schwarz function of the curve (when a = a
(N)
crit), we can still define

the velocity field via equation (2.7) with S(z) (no longer a Schwarz function in the
strict sense) defined by (2.15). To illustrate the nature of the limiting solution in more
detail, the local form of both the patch boundary shape and the velocity field in the
neighbourhood of the cusp in the limiting case is now examined.

Consider the case N = 4 (all other N can be treated similarly). Let a = a
(N)
crit and let

zc be the position of a cusp in the boundary ∂D where zc is the image of the point
ζ = ω4 = exp( 1

4
iπ), i.e.

zc = z0(ω4). (2.34)

zc is on the ray arg[z] = − 1
4
π. There are three other symmetrically disposed cusps in

the patch boundary, but it is enough to consider the one at zc. The appearance of the
cusp corresponds to

z0ζ(ω4) = 0. (2.35)
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Note that when a = a
(4)
crit the corresponding solution b = b

(4)
crit of (2.28) is finite and

well-defined (see figure 2). Indeed, we obtain

a
(4)
crit = 2.565, b

(4)
crit = 15.218. (2.36)

The conformal map z(ζ) is therefore an analytic function of ζ at ζ = ω4 and can thus
be Taylor expanded as

z = zc + (ζ − ω4)
2 z0ζζ(ω4)

2!
+ (ζ − ω4)

3 z0ζζζ(ω4)

3!
+ · · · , (2.37)

where we have used (2.35). A numerical calculation reveals that z0ζζ(ω4) = −11.969ω4

and z0ζζζ(ω4) = −33.733. This implies that in the vicinity of the cusp,

z − zc = αω4(ζ − ω4)
2 + β(ζ − ω4)

3 + · · · , (2.38)

where α = −5.985 and β = −5.622 are real. Alternatively, (2.38) can be written

(z − zc)ω4 = −α(ζω̄4 − 1)2 − β(ζω̄4 − 1)3 + · · · . (2.39)

Defining X + iY ≡ (z − zc)ω4 (which is equivalent to mapping the position of the
cusp to the origin and rotating it by 1

4
π) and letting ζω̄4 = exp(iφ) for |φ| � 1 (which

amounts to a rotation of the parametric ζ-plane by − 1
4
π so that φ = 0 corresponds

to the pre-image of the cusp) then for small (real) φ,

X + iY = αφ2 + iαφ3 + iβφ3 + · · · , (2.40)

so that a local parametric representation of ∂D is given by

X = αφ2;Y = (α+ β)φ3, (2.41)

or, eliminating φ,

Y = ±(α+ β)

(
X

α

)3/2

, (2.42)

which, because α < 0, has real solutions for Y when X < 0 and represents a 3
2
-cusp

at X = Y = 0, symmetric about the x-axis.
We now find the local form of the associated velocity field. As a function of ζ,

S(z(ζ)), as defined by (2.15), is similarly analytic at ζ = ω4 and, as a result, also has
a Taylor expansion about this point. Indeed, defining S(ζ) as

S(ζ) ≡ S(z(ζ)), (2.43)

we have

S(ζ) =S(ω4) + (ζ − ω4)Sζ(ω4) + (ζ − ω4)
2Sζζ(ω4)

2!
+ (ζ − ω4)

3Sζζζ(ω4)

3!
+ · · · ,

(2.44)

where

S(ω4) = z̄c, Sζ(ω4) = 0, Sζζ(ω4) = −z0ζζ(ω4),

Sζζζ(ω4) = 6ω4z0ζζ(ω4) + iz0ζζζ(ω4). (2.45)

Equation (2.37) can be used to show that

(ζ − ω4) =

(
2(z − zc)
z0ζζ(ω4)

)1/2
[

1− z0ζζζ(ω4)

6z0ζζ(ω4)

(
2(z − zc)
z0ζζ(ω4)

)1/2

+ · · ·
]
, (2.46)
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so that, using (2.46) and (2.45) in (2.44), S(z) is seen to have a local expansion of the
form

S(z) = z̄c + i(z − zc) +
1

6

(
2(z − zc)
z0ζζ(ω4)

)3/2

[Sζζζ(ω4)− iz0ζζζ(ω4)] + · · · . (2.47)

Thus, although S(z) ceases to have a Taylor expansion at zc, it has a local expansion
in increasing powers of (z − zc)1/2. The local velocity field near the cusp zc thus has
an expansion of the form

u− iv = 1
2
iω

(
(z̄ − z̄c)− i(z − zc)− 0.725i

(
2(z − zc)
z0ζζ(ω4)

)3/2

+ o((z − zc)3/2)

)
, (2.48)

where the third non-zero coefficient has been computed numerically. Note that the
velocity field is finite at the cusp (indeed it vanishes, as it must, for continuity with
the velocity field inside the patch) and no physical quantities become singular at the
limiting state. Overman (1986) emphasizes that limiting V-states need not be singular
V-states and, indeed, those found here are not.

In the case of an isolated rotating uniform vortex patch in the absence of external
straining flows, it is known (Overman 1986; Saffman 1992) that the limiting states
develop corners in which the tangent angle changes discontinuously by 90◦. This
class of rotating patches has been seen to have limiting states with cusp singularities.
Overman (1986) has shown that these are the only two allowable possibilities for
limiting V-states in which the tangent angle is discontinuous. He also reports that no
limiting V-states exhibiting cusp singularities are known to him (although he does not
rule out the possibility that they might exist). The only other solutions known to the
present author in which a uniform patch of vorticity develops a cusp singularity is in
a class of non-rotating hypotrochoidal vortex patch equilibria situated in a rotational
polynomial straining flow which is singular at infinity. These solutions were found by
Burbea (1982). The solutions found above are different from Burbea’s and involve
rotating V-states in which the flow vanishes at infinity. Nevertheless, in the solutions
above, the central vortex patch finds itself situated in the straining flow owing to the
polygonal array of surrounding line vortices and this is apparently crucial in rendering
the limiting states cuspidal, rather than corner-like, in nature. This evidence suggests
there is no physical reason why cuspidal limiting states in V-state equilbria cannot
be realized; rather, it suggests that a vortex patch in equilibrium will only display
cuspidal limiting states provided there is some (sufficiently strong) external straining
mechanism (or ‘forcing’) on it. The self-induced flow of an isolated simply connected
uniform vortex patch in equilibrium is, it seems, not strong enough to induce such a
cusp.

2.5. Limit N →∞
Another limit of interest is N → ∞. In figure 8, a typical streamline plot for N = 25
and a = 1.5 is shown and displays a distinctive ‘cat’s-eye’ pattern developing in a
radial layer at some distance outside the central vortex patch. The central vortex patch
has become very nearly circular in shape. This behaviour is found to be generic: in
the limit N → ∞ for fixed a, an increasing number of line vortex singularities
collect in an almost circular configuration some distance outside the central patch.
As N → ∞, this collection of line vortex singularities draws close to the singular
limit of a uniform vortex sheet (Saffman 1992) surrounding the central vortical patch.
Moreover, provided this vortex-sheet structure is not too close to the central vortex
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Figure 8. Streamlines for N = 25 and a = 1.5. As N →∞ the collection of satellite line vortices
tends to form a circular vortex sheet of uniform strength surrounding the central patch.

patch, the central patch becomes indistinguishably close to a circle. In the limit
N → ∞, a typical solution tends to a circular vortex sheet surrounding a uniform
circular vortex patch.

To see this, note that as N → ∞ for fixed a > 1 (for which solutions exist) it can
be shown that

c0 ∼ a2 − a4, c1 ∼ a2

2
, c2 ∼ −a

2

2

1

a2N
, (2.49)

so that c2 becomes exponentially small while c0 and c1 tend to finite limits. It is
straightforward to show that, in the same limit,

b ∼ 2(a2 − 1). (2.50)

Using (2.50) in (2.25) implies that

R ∼ 1

a
. (2.51)

Using all this information in the conformal map (2.13) implies that, for ζ on the
unit-ζ circle,

z(ζ) = R

(
1

ζ
+

bζN−1

ζN − aN
)
∼ 1

aζ

(
1− 2(a2 − 1)

aN
ζN
)
. (2.52)

Equation (2.52) shows that the patch tends to a circular disk, of radius 1/a, with small
(in fact exponentially small, in the limit) N-fold symmetric ripples on its boundary.

It is also found that a(N)
crit tends to unity for large N (this can be established by a

large-N analysis of the solutions to (2.33), the details are omitted here). From (2.52)
this implies that for large N and a close to a(N)

crit , the central vortex patch is very close

to the circular band of cat’s eyes. In the double limit, N → ∞ and a → a
(N)
crit , it is

expected that the solution will tend to the configuration in which a Rankine vortex
(Saffman 1992) has a circular vortex sheet of uniform strength at its boundary.
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3. Linear stability analysis
The linear stability of the exact solution class is now studied. Under a general

irrotational perturbation, using Helmholtz laws, the velocity field in the co-rotating
frame can be written

u− iv =


− 1

2
iωG(z, t), z ∈ D(t),

1
2
iω

(
z̄ −

N∑
k=1

γs

z − zk(t) − F(z, t)

)
, z /∈ D(t),

(3.1)

where G(z, t) is analytic inside D(t) and F(z, t) analytic outside D(t) and is O(1/z) as
|z| → ∞. Continuity of velocity on the vortex jump requires that

G(z, t)− F(z, t) = −z̄ +

N∑
k=1

γs

z − zk(t) on ∂D(t). (3.2)

Equation (3.2) is a scalar Riemann–Hilbert problem. The solution for F(z, t), decaying
as |z| → ∞, is given by the Cauchy integral

F(z, t) =
1

2πi

∮
∂D(t)

(
−z̄′ +

N∑
k=1

γs

z′ − zk(t)
)

dz′

z′ − z = − 1

2πi

∮
∂D(t)

z̄′ dz′

z′ − z , z /∈ D(t),

(3.3)

the second equality following because the points {zk(t)} are outside D(t). The pertur-
bation to the base state conformal map (hereinafter, denoted z0(ζ)) is given by

z(ζ, t) = z0(ζ) + ε exp(σt)ẑ(ζ), (3.4)

and the perturbed positions of the line vortices given by

zk(t) = zk0 + ε exp(σt)ẑk, k = 1, . . . , N, (3.5)

where ε� 1 is a small parameter and where ẑ(ζ), ẑk and σ are to be determined. zk0
denote the equilibrium positions of the line vortices as found in § 2.

To find the linear stability spectrum, a spectral method based on Taylor and
Laurent expansions is used. The function ζẑ(ζ) has a Taylor expansion of the form

ζẑ(ζ) =

∞∑
n=0

ânζ
n, (3.6)

and its conjugate function has an expansion of the form

ζ−1ẑ(ζ−1) =

∞∑
n=0

â∗n
ζn
, (3.7)

where it is assumed that the sets {an} and {a∗n} are independent quantities. For
numerical computation, the expansions (3.6) and (3.7) are truncated at order 1

2
N− 1

where N is an even integer.

If ζk0 denote the pre-images in the ζ-plane of the points zk0, the quantities {ζ̂k|k =
1, . . . , N} are defined via the equations

zk(t) = zk0 + ε exp(σt)ẑk ≡ z(ζk0 + εζ̂k, t), k = 1, . . . , N, (3.8)

so that, to leading order in ε,

ẑk = ζ̂kz0ζ(ζk0) + ẑ(ζk0), k = 1, . . . , N. (3.9)
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Similarly,

ẑk = ζ̂∗k z0ζ(ζ̄k0) + ẑ(ζk0), k = 1, . . . , N. (3.10)

The set {ζ̂∗k | k = 1, . . . , N} is assumed to be independent of the set {ζ̂k | k = 1, . . . , N}.
After truncation, the set of unknowns is as follows:

{âk | k = 0 . . . 1
2
N− 1}, {â∗k | k = 0 . . . 1

2
N− 1},

{ζ̂k| k = 1, . . . , N}, {ζ̂∗k | k = 1, . . . , N}. (3.11)

This constitutes a set of N + 2N unknowns. To eliminate a rotational degree of
freedom associated with the Riemann mapping theorem, the condition

a0 = a∗0, (3.12)

is imposed. This reduces the total number of unknowns to N− 1 + 2N.
By composition of analytic functions, we can define F0(ζ) via

F0(ζ) ≡ F0(z0(ζ)), (3.13)

and similarly F̂(ζ) via

F(z(ζ, t), t) =F0(ζ) + εF̂(ζ) exp(σt) + O(ε2). (3.14)

To find F̂(ζ), first note that because F(z, t) is analytic outside D then it has a Laurent
series of the form

F(z, t) =

∞∑
k=0

Fk

zk+1
. (3.15)

It can be shown from (3.3) that

Fk ≡ 1

2πi

∮
∂D

z̄′z′k dz′, k = 0, 1, 2, . . . . (3.16)

These coefficients depend on ε. Linearizing for small ε, so that,

Fk = Fk0 + εF̂k exp(σt) + O(ε2), (3.17)

it follows that

F̂k = − 1

2πi

[∮
|ζ|=1

ẑ(ζ−1)(z0(ζ))
kz0ζ(ζ) dζ

+

∮
|ζ|=1

kz0(ζ
−1)(z0(ζ))

(k−1)z0ζ(ζ)ẑ(ζ) dζ +

∮
|ζ|=1

z0(ζ
−1)(z0(ζ))

kẑζ(ζ) dζ

]
. (3.18)

The linearized kinematic boundary condition provides some of the N− 1 + 2N
equations required to find the N− 1 + 2N unknowns. Some algebraic manipulation
reduces the linearized kinematic boundary condition to

σRe

[
z̄0ζ(ζ

−1)ẑ(ζ)

ζ

]
= Re

[
− 1

2
iωζz0ζ

(
N∑
j=1

γsẑj

(z0(ζ)− zj0)2
+

∞∑
k=0

F̂k

(z0(ζ))(k+1)

)]
. (3.19)

Equations (3.6), (3.7) (3.9) and (3.10) are substituted into (3.19) and the equation
expanded as a Laurent series. Equating coefficients on both sides of (3.19) for ζ
between ζ−(N/2)+1 and ζ(N/2)−1, providesN−1 equations. The infinite sum appearing
in (3.19) is truncated, consistently, after the k = 1

2
N− 1 term.
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The linearized equations for the line vortices provide the remaining 2N equations.
These are given by

σẑk = 1
2
iω

(
ẑk −

∑
j 6=k

γs(ẑj − ẑk)
(zk0 − zj0)2

− F̂ (lv)
k

)
, k = 1, . . . , N, (3.20)

and its complex conjugate, where

F̂
(lv)
k =

1

2πi

∮
|ζ|=1

ẑ(ζ−1)z0ζ(ζ)

z0(ζ)− zk0 dζ +
1

2πi

∮
|ζ|=1

z̄0(ζ
−1)ẑζ(ζ)

z0(ζ)− zk0 dζ

+
1

2πi

∮
|ζ|=1

z̄0(ζ
−1)z0ζ(ζ)(ẑk − ẑ(ζ))
(z0(ζ)− zk0)2

dζ, (3.21)

To solve the system, the set (3.11) is vectorized to produce a vector x to be
determined. The N − 1 + 2N equations above lead to a generalized eigenvalue
problem of the form

Ax = σBx, (3.22)

where the matrices A and B depend on the base state equilibrium. For convenience,
all Taylor/Laurent coefficients of functions of the base-state conformal map (and its
derivatives and integrals) are computed by evaluating these functions at M points
on the unit ζ-circle and using fast Fourier transforms. To avoid unacceptable alias-
ing errors, we take M > 4N. Most of the results which follow use N = 64 and
M = 256.

3.1. Checks of the linear stability analysis

It is known that the dynamics of point vortices and patches of uniform vorticity is
Hamiltonian (Saffman 1992). Therefore, any eigenvalues that do not occur as pure-
real or pure-imaginary pairs will occur in complex conjugate quartets. This provides
a simple first check on the numerical code.

Only perturbations which preserve the patch area and the vortex centroid are
of interest in assessing the linear stability of the configurations. For any steady
state, there exists a neighbouring equilibrium corresponding to a different value of
R, i.e. an equilibrium in which the rotating patch has a slightly different area. For
any a and N, we therefore expect to find a zero eigenvalue corresponding to these
neighbouring steady solutions of different area. This is found to be the case. This
mode is recognized and discarded – only perturbations which preserve the area of the
vortex patch and vortex centroid are considered in assessing the linear stability. The
fact that the patch area, vortex centroid and total angular momentum are linearly
conserved quantities is used as a check on the accuracy of the calculation of the
general eigenvectors.

As a → ∞, the configurations tend to a situation in which a small, near-circular
Rankine vortex is placed in the stationary point flow due to a configuration of N
co-rotating satellite vortices as considered by Thomson (1882). Thus, as a → ∞, we
expect that the linear stability spectrum will tend to a direct sum of the eigenvalues
associated with the shape modes of an isolated circular Rankine vortex (which, in
a co-rotating frame of reference, are all given by σ = 1

2
iω) and the finite set of

eigenvalues associated with a co-rotating circular array of N satellite vortices each of
strength Γs. The latter linear stability problem is classical (Thomson 1882; Havelock
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1931; Saffman 1992) and is given, in our notation, by

σ = ± 1
4
ωγs
√
k(N − k)(k(N − k)− 2(N − 1)), k = 0, 1, . . . , (N − 1). (3.23)

As a→∞, the numerical method retrieves these values to spectral accuracy.
A note on a limitation of the numerical method. The method used relies on Laurent

expansions of the function F(z). As a→ a
(N)
crit it must be expected that the numerical

method will become increasingly inaccurate for fixed values of N and M as a result
of attempting to evaluate an expansion at radii too close to its radius of convergence
(this is intimately related to the fact demonstrated earlier that in the limit a → a

(N)
crit

the function S(z), and hence F(z), fails to be analytic in an enclosing neighbourhood
of ∂D). Indeed, for a-values sufficiently far from a

(N)
crit it is found that independently

increasingN andM do not affect the results of the eigenvalue calculation; however,
if a is too close to a

(N)
crit it is found that the spectrum is susceptible to significant

changes as the order of the method is increased. This means that using the method
above, we cannot compute the linear stability of solutions with values of a too close
to a(N)

crit .

3.2. Results

It is well-known (Thomson 1882; Saffman 1992) that a circular array of N co-
rotating vortices (with no central line vortex) is a linearly stable configuration for
2 6 N < 7, is neutrally stable for N = 7 and unstable for N > 7. In the limit
a→ ∞, the central vortex patch vanishes leaving precisely such a co-rotating system
of line vortices. Morikawa & Swenson (1971) have studied the case of a central
line vortex placed at the centre of a co-rotating configuration of unit-strength line
vortices and found that, if the circulation of the central line vortex is less than
unity, the equilibria are stable for N = 3, 4, 5, 6 and 7. See table 1 of Morikawa
& Swenson (1971). It is therefore expected that, at least for large a, cases N = 3,
4, 5, 6 and possibly N = 7 are reasonable candidates for being linearly stable
configurations. Morikawa & Swenson (1971) also find that a central line vortex of
sufficiently strong positive vorticity eventually stabilizes the total N-polygonal line
vortex configuration for any N > 8. For example, a central line vortex of strength
greater than 0.5, but less than 12.25, sitting at the centre of eight unit-circulation
line vortices represents a stable configuration. Table 1 of Morikawa & Swenson
(1971) provides the stability ranges for higher values of N. Figure 4 shows that the
relative circulation of the central vortex patch increases with decreasing a for N > 8.
Therefore, although we expect the large-a configurations for N > 8 to be linearly
unstable, a priori it is conceivable that the configurations could stabilize at smaller
values of a.

The results of the calculation show that for N between 3 and 7 inclusive, the
configurations are linearly stable for the entire range of a-values that could be
reliably analysed using the numerical method described above. No eigenvalues with
positive real part are found (for N = 3, 4, . . . , 7) for any a value that is not too
close to a(N)

crit (typically, only when a is within approximately 0.1 of a(N)
crit do the results

of the numerical method become unreliable. This manifests itself by large changes
in the computed spectrum as the order of the method is increased). Note that, in
respect of the solutions for non-rotating patches in an infinite polynomial straining
flow computed by Burbea (1982), the author states (without including details) that
the entire class of patches is stable except for the limiting cuspidal state. The present
author can find no further corroboration of this statement in the literature. It is
possible that a similar situation holds for the class of rotating solutions found here
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Figure 9. Maximum linear growth rates against a for N = 8, . . . , 12.

although we can make no definite statement about this until a method capable of
accurately computing the linear stability spectrum of the close-to-limiting states is
implemented.

As expected, for N > 8 the large-a configurations are linearly unstable. However,
in the cases N = 8, 9, 10, 11 and 12 which have been examined in detail, there exists
a critical a value at which the maximum linear growth rate becomes zero. Figure 9
shows the maximum linear growth rate plotted as a function of a for N between 8
and 12 inclusive. The critical a values at which exchange of stability occurs will be
denoted a

(N)
stab. When N = 8 it is found that at a = 2.819 = a

(8)
stab, a ±-pair of real

eigenvalues (the only real eigenvalues in the spectrum) pass through zero and, for
a < 2.819, become pure imaginary. For N = 9, it is found that at a = 2.219 = a

(9)
stab two

repeated ±-pairs (the only real eigenvalues in the spectrum) similarly pass through
zero and become pure imaginary for a < 2.219 thereby rendering the configuration
linearly stable. Such behaviour is similarly found to occur for all higher values of N
analysed. It is conjectured that the states are linearly stable for all values in the open
interval a ∈ (a(N)

crit , a
(N)
stab) although corroboration of this requires further investigation.

For N even, a ±-pair of real eigenvalues becomes pure imaginary whereas for N odd,
a repeated ±-pair of real eigenvalues become pure imaginary. The values of a(N)

stab are
shown in table 2.

Morikawa & Swenson (1971) observe that an unstable configuration of N > 8 unit-
circulation satellite line vortices is stabilized by a sufficiently strong positive central
line vortex. The same appears to be true of the exact solutions found here when
the total circulation of the central vortex patch is sufficiently large. For purposes of
comparison, the value of a (for each N > 8) at which the ratio of the circulations
of the central vortex patch and the satellite line vortices equals the critical ratio for
linear stability, as calculated by Morikawa & Swenson, is calculated. For example,
Morikawa & Swenson (1971) found that if the ratio of the circulation of a central
line vortex to that of each of 8 satellite line vortices is greater than 0.5 then the
configuration is linearly stable. The value of a at which Γp/Γs = 0.5 is found to be
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N a
(N)
stab a

(N)
MS

8 2.819 2.828
9 2.219 2.235

10 1.872 1.889
11 1.712 1.731
12 1.584 1.603

Table 2.

N
(a(N)
MS − a(N)

stab)

a
(N)
stab

b

aN

∣∣∣∣∣
a

(N)
stab

8 0.0032 0.0040
9 0.0072 0.0068

10 0.0091 0.010
11 0.011 0.012
12 0.012 0.013

Table 3.

a = 2.828. This value of a has been calculated for N between 8 and 12 inclusive and
is denoted a

(N)
MS . The computed values of a(N)

MS are also shown in table 2 to facilitate

comparison with the values of a(N)
stab. In the cases analysed, the difference between a(N)

stab

and a(N)
MS is found to be of the order of just 1%.

The following explanation for the closeness of a(N)
stab to a(N)

MS can be offered. For large

values of N, it is found that the shapes of the central vortex patches when a = a
(N)
stab

are very close to circular. The central vortex patch can therefore be modelled, to a
good approximation, by a circular Rankine vortex of the same total circulation and
it is well-known that the irrotational flow field induced outside a Rankine vortex is
equivalent to that induced by replacing the Rankine vortex with a point vortex of the
same total circulation at its centre.

To test this idea, it is noted that for N > 8, the values of (a(N)
stab)

N are much greater
than unity, thus for ζ on the unit ζ-circle,

z(ζ) = R

(
1

ζ
+

bζN−1

ζN − aN
)
≈ R

ζ

(
1− b

aN
ζN
)
, (3.24)

where a has the value a(N)
stab and b is the corresponding solution of (2.22). Equation

(3.24) shows that the patch is a radius-R circular disk (i.e. a Rankine vortex) to within
an N-fold symmetric ripple of amplitude Rb/aN . Given this, and assuming the above

explanation for the discrepancy between a
(N)
stab and a

(N)
MS is correct, it is reasonable to

expect that the relative discrepancy (a(N)
MS − a(N)

stab)/a
(N)
stab might be of the same order as

b/aN (evaluated at a(N)
stab) – the relative departure of the central patch (at the stability

boundary) from a perfect Rankine vortex. This is found to be the case. Table 3 shows
these values for N between 8 and 12.

The fact that a(N)
stab ≈ a(N)

MS is of practical value. Morikawa & Swenson (1971) describe

a simple algorithm for computing a(N)
MS for any N. Therefore, assuming that a(N)

stab ≈ a(N)
MS

for all N > 8, good estimates of the linear stability regions of the exact solutions
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found here can thus be obtained for higher values of N without the need for the
detailed numerical calculations just described.

4. Nonlinear evolution
It has been conjectured above that the close-to-limiting vortex configurations are

neutrally stable for all N. Even if this is true, it is likely that the highly distorted shapes
of the central patch might be susceptible to nonlinear instabilities associated with such
effects as nonlinear steepening and filamentation or vortex stripping, especially as the
near-cuspidal regions of the patch protrude outwards into the strain fields associated
with the surrounding satellite vortices. If these strain fields are sufficiently perturbed
(e.g. by perturbing the positions of the satellite vortices – see later) it is reasonable to
expect that the protruding patch vorticity might be entrained away from the centre
of the configuration. This idea is now tested by exposing the equilibria to a restricted
class of perturbations and computing the fully nonlinear evolution. It is not the
purpose of this section to present an exhaustive study of the nonlinear stability of
the exact solutions.

The nonlinear evolution of the equilibria of § 2 is amenable to computation via the
methods of contour dynamics originally expounded by Deem & Zabusky (1978) (see
also a comprehensive review article by Pullin 1992). To do this, the contour surgery
code developed by Dritschel (1988b) is supplemented by a finite set of differential
equations governing (according to the laws of Helmholtz) the evolution of the set of
line vortices. For convenience, the choice ω = 2 is made so that the corresponding
angular velocity is Ω = 1

2
ω = 1. Time is scaled with 2π, so that a single revolution

period T of each exact solution is given by T = 1.
First, several runs (of the modified code) consisting purely of an N-polygonal array

of co-rotating line vortices was made for various values of N. The angular velocity Ω
of steady rotation is well-known to be given as

Ω =
Γ (N − 1)

4πr2
, (4.1)

where r is the radial distance of each line vortex from the origin, and Γ is the
circulation of each vortex (Thomson 1882). It is checked that the modified contour
dynamics algorithm reproduces a steady configuration rotating with this angular
velocity.

Several runs were made using initial configurations given by the unperturbed
solutions of § 2. About 150 points are used to specify the initial contour. For values of
N between 3 and 7, it is found that provided a is sufficiently large, a typical initially
unperturbed exact solution can persist with no visible change of form for up to ten

period revolutions (the total duration of the computations). If a is close to a(N)
crit so that

the central patch is distorted from circular, the solutions are often seen to develop
a form of unsteadiness in the shape of the central patch. Undulations of the patch
boundary, most pronounced in the vicinity of any near-cusps, are observed and are
characterized by a repeated sharpening and smoothening of the near-cusps.

First, it is of interest to establish the nonlinear fate of the linearly unstable
configurations. For initially unperturbed configurations with N > 8 and a > a

(N)
stab

the configuration will rotate for several period revolutions with no visible change of
form. However, eventually the accumulation of numerical errors provides a seed for
growth of the linearly unstable modes. Three time-frames of the evolution of a typical
(linearly unstable) N = 8 solution is shown in figure 10 and reveals an interesting
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Figure 10. Nonlinear evolution of an initially unperturbed, linearly unstable, solution N = 8, a = 7:
times t = 0, 3.875, 8.75. The configuration first undergoes a transition in which alternate vortices
move in and out to circles on either side of the equilibrium circle before the array eventually loses
all ordered structure.

feature; at time t = 3.875 (after nearly four period revolutions) the configuration
of the 8 satellite line vortices has changed so that two distinct co-rotating rings of
4 vortices (of different radii) have formed. The same phenomenon was observed by
Morikawa & Swenson (1971) (who referred to it as ‘nonlinear periodic oscillations’)
in the case of even N and sufficiently small perturbations. By t = 8.75, the rotating
configuration has broken down, the centroid of the central vortex patch moves away
from the origin and the patch is torn apart by the effects of the strain fields induced by
the satellite line vortices which have moved out of any ordered pattern. The long-time
effect is a complete disintegration of the vortex array.

We now perturb the equilibria. For purposes of comparison between different
a and N, consideration is restricted to a fixed perturbation type which can be
sensibly defined for all choices of a and N. This is chosen to be an inward radial
perturbation of ε = 0.01 of the position of the line vortex on the positive x-axis.
This is sufficiently small that it might be expected to constitute a ‘linear’ perturbation
for most configurations, but it will also introduce asymmetric differentials in the
strain field experienced by the central patch owing to the satellites. Note that this
perturbation leads to an initial configuration that does not have the same angular
momentum as the initial unperturbed state. Because angular momentum is conserved
by the dynamics, we do not therefore expect to see the perturbed states ‘relax’ into
the equilibria found in § 2.

Typical results are shown in figures 11–19 for N = 3, 5 and N = 7. For each
N, three distinct a-values are chosen. The maximum duration of the calculations is
t = 10. In the cases where the configuration does not survive until t = 10 without
significant change of form, the final configurations plotted are those just before the
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Figure 11. N = 3, a = 15: times t = 0, 10.

Figure 12. N = 3, a = 10: times t = 0, 2.7.

Figure 13. N = 3, a = 8: times t = 0, 1.9.

first contour surgery event. This usually occurs due to the formation of a long vortical
filament protruding from the central patch.

As discussed by Morikawa & Swenson (1971), it is natural to expect that what
actually constitutes a linear perturbation will itself depend on the configuration being
perturbed. The case N = 3 appears to be unstable to the chosen perturbation even
for large values of a (so that the central core is small and close to circular). Results
showing distortions of the central vortex patch are shown in figures 11–13 for a
descending sequence of a-values. The analysis of § 3 shows that these configurations
have no linearly unstable modes. The nonlinear results suggest that the chosen
perturbation is sufficiently large that it cannot be considered a linear perturbation
for these configurations. A possible explanation is suggested by figure 3 which shows
that, for N = 3, the circulation of the patch is very weak compared to the satellite
line vortex circulations so that even a mild displacement of a satellite line vortex
might be expected to have a significant dynamical effect on the central patch. As N
increases, the central patch proves more robust to this perturbation for a larger range
of a-values and maintains its overall shape for longer periods of time. As expected,
for sufficiently small a (so that the central patches are quite distorted) eventually
even this mild perturbation causes growth of distortions in the boundary, mainly
associated with the outwardly protruding parts of the patch. The case of N = 5 is
shown in figures 14–16. For a = 2.0, the entraining/stripping of the protruding parts
of the central patch by the exterior straining field is clearly seen in figure 16 (this
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Figure 14. N = 5, a = 2.5: times t = 0, 10.

Figure 15. N = 5, a = 2.25: times t = 0, 10.

Figure 16. N = 5, a = 2: times t = 0, 1.2.

effect is also evident in figure 13 for N = 3). Although all the configurations in figures
14–16 have no linearly unstable modes, the nonlinear calculations suggest that the
threshold on the size of perturbations which are accurately described within linear
theory decreases with decreasing a for fixed N. (To test this quantitatively, a weakly
nonlinear analysis would be appropriate, but is beyond the scope of the present
paper.) On the other hand, as N increases, the arrays appear to become more robust
to this perturbation for a wider range of a values. Figures 17–19 show calculations
for N = 7 right up to t = 10 and no significant change in form in either the structure
of the array or the vortex patch shape is observed. The nonlinear evolution of linearly
stable configurations for N > 8 is found to be similar to the N = 7 case in figure 19.

5. Final remarks
It is useful to have knowledge of explicit solutions of the two-dimensional Euler

equation. This paper has presented a wide class of explicit solutions involving regions
of distributed vorticity and has analysed their linear stability properties. It has not
been possible, with the method of analysis used herein, to ascertain the linear stability
properties of the configurations which are close to limiting. Nevertheless, for N
between 3 and 7, all configurations investigated are found to be neutrally stable. For
N between 8 and 12, the configurations are neutrally stable for sufficiently small a. It
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Figure 17. N = 7, a = 6.0: times t = 0, 10.

Figure 18. N = 7, a = 2.0: times t = 0, 10.

Figure 19. N = 7, a = 1.65: times t = 0, 10.

is interesting that, for N between 8 and 12, the configurations with small near-circular
central patches are linearly unstable, but those with larger, geometrically non-trivial
central patches prove to be stable. It is expected that solutions with N > 12 display
similar properties.

It is convenient that the nonlinear evolution of the solution class can be studied
by adapting pre-existing contour dynamics codes. Here, only limited examples of the
nonlinear evolution have been studied. Including perturbations of the central patch
boundaries, there are an infinite number of ways in which the solution class might
be nonlinearly perturbed. In any given application of the solutions to a physical
problem, the application itself will suggest which class of perturbations might be of
interest.
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